root mean sq anom root mean sq ∫dY [ OLE2 CPT ESCENARIO1 PROBABILIDADESTMED ] : Probabilidades -Temperatura Media data
root mean sq anom root mean sq
∫dY [ OLE2 CPT ESCENARIO1 PROBABILIDADESTMED ] .
is
Independent Variables (Grids)
- Forecast Lead Time in Months
- grid: /L (months) ordered [ (2.5)] :grid
Other Info
- bufferwordsize
- 8
- CE
- null
- colorscalename
- halfgreyscale
- CS
- null
- datatype
- doublearraytype
- file_missing_value
- 0
- fnname
- maskle
- maxncolor
- 254
- missing_value
- NaN
- pointwidth
- 0
- units
- ids degree_north
- history
- [ dominant_class ( OLE2 CPT ESCENARIO1 TMED Sobre la Normal ) + masklt ( { [ dominant_class ( OLE2 CPT ESCENARIO1 TMED ) - 1. ] * 11. } , 22 ) ] + [ dominant_class ( OLE2 CPT ESCENARIO1 TMED Normal ) + masknotrange ( { [ dominant_class ( OLE2 CPT ESCENARIO1 TMED ) - 1. ] * 11. } , 10 , 12 ) ]
- dominant_class [ OLE2 CPT ESCENARIO1 TMED Sobre la Normal ] + masklt [ ( { dominant_class [ OLE2 CPT ESCENARIO1 TMED ] - 1. } * 11. ) , 22 ]
- dominant_class [ OLE2 CPT ESCENARIO1 TMED Sobre la Normal ]
dominant_class over TMED[<35, >80]
- masklt [ ( { dominant_class [ OLE2 CPT ESCENARIO1 TMED ] - 1. } * 11. ) , 22 ]
dominant_class over C[Bajo la Normal, Sobre la Normal]
- dominant_class [ OLE2 CPT ESCENARIO1 TMED Normal ] + masknotrange [ ( { dominant_class [ OLE2 CPT ESCENARIO1 TMED ] - 1. } * 11. ) , 10 , 12 ]
- dominant_class [ OLE2 CPT ESCENARIO1 TMED Normal ]
dominant_class over TMED[<35, >80]
- masknotrange [ ( { dominant_class [ OLE2 CPT ESCENARIO1 TMED ] - 1. } * 11. ) , 10 , 12 ]
dominant_class over C[Bajo la Normal, Sobre la Normal]
- dominant_class [ OLE2 CPT ESCENARIO1 TMED Bajo la Normal ] + maskgt [ ( { dominant_class [ OLE2 CPT ESCENARIO1 TMED ] - 1. } * 11. ) , 0 ]
- dominant_class [ OLE2 CPT ESCENARIO1 TMED Bajo la Normal ]
dominant_class over TMED[<35, >80]
- maskgt [ ( { dominant_class [ OLE2 CPT ESCENARIO1 TMED ] - 1. } * 11. ) , 0 ]
dominant_class over C[Bajo la Normal, Sobre la Normal]
root mean sq $integral dY$ [ OLE2 CPT ESCENARIO1 PROBABILIDADESTMED ] - Averaged over S[0000 1 Jan 2000, 0000 1 Mar 2025] minimum 0.0% data present
root mean sq anom root mean sq $integral dY$ [ OLE2 CPT ESCENARIO1 PROBABILIDADESTMED ] - Averaged over X[117.75W, 28.25W] Y[33N, 63S] minimum 0.0% data present
Last updated: Thu, 06 Mar 2025 07:30:01 GMT
Expires: Sat, 05 Apr 2025 00:00:00 GMT
Filters
Here are some filters that are useful for manipulating data. There
are actually many more available, but they have to be entered
manually. See
Ingrid
Function Documentation for more information.
- Monthly Climatology calculates
a monthly climatology by averaging over all years.
- anomalies calculates the difference
between the (above) monthly climatology and the original data.
- Integrate along
- Differentiate along
- Take differences along
Average over
RMS (root mean square with mean *not* removed) over
RMSA (root mean square with mean removed) over
Maximum over
Minimum over
Detrend (best-fit-line) over
Note on units